Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568969

RESUMO

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , RNA/metabolismo
2.
Behav Brain Res ; 463: 114915, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38368954

RESUMO

Understanding the neural mechanisms involved in learning processes is crucial for unraveling the complexities of behavior and cognition. Sudden change from the untrained level to the fully-learned level is a pivotal feature of instrumental learning. However, the concept of change point and suitable methods to conveniently analyze the characteristics of sudden change in groups remain elusive, which might hinder a fuller understanding of the neural mechanism underlying dynamic leaning process. In the current study, we investigated the learning processes of mice that were trained in an aversive instrumental learning task, and introduced a novel strategy to analyze behavioral variations in instrumental learning, leading to improved clarity on the concept of sudden change and enabling comprehensive group analysis. By applying this novel strategy, we examined the effects of cocaine and a cannabinoid receptor agonist on instrumental learning. Intriguingly, our analysis revealed significant differences in timing and occurrence of sudden changes that were previously overlooked using traditional analysis. Overall, our research advances understanding of behavioral variation during instrumental learning and the interplay between learning behaviors and neurotransmitter systems, contributing to a deeper comprehension of learning processes and informing future investigations and therapeutic interventions.


Assuntos
Condicionamento Operante , Camundongos , Animais
3.
Psychophysiology ; 61(3): e14472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968552

RESUMO

With the ever-changing social environment, individual creativity is facing a severe challenge induced by stress. However, little is known regarding the underlying mechanisms by which acute stress affects creative cognitive processing. The current research explored the impacts of the neuroendocrine response on creativity under stress and its underlying cognitive flexibility mechanisms. The enzyme-linked immuno sorbent assay was employed to assess salivary cortisol, which acted as a marker of stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis. Eye blink rate (EBR) and pupil diameter were measured as respective indicators of dopamine and noradrenaline released by the activation of the sympathetic-adrenal-medullary (SAM) axis. The Wisconsin card task (WCST) measured cognitive flexibility, while the alternative uses task (AUT) and the remote association task (RAT) measured separately divergent and convergent thinking in creativity. Results showed higher cortisol increments following acute stress induction in the stress group than control group. Ocular results showed that the stress manipulation significantly increased EBR and pupil diameter compared to controls, reflecting increased SAM activity. Further analysis revealed that stress-released cortisol impaired the originality component of the AUT, reducing cognitive flexibility as measured by perseverative errors on the WCST task. Serial mediation analyses showed that both EBR and pupil diameter were also associated with increased perseverative errors leading to poor originality on the AUT. These findings confirm that physiological arousal under stress can impair divergent thinking through the regulation of different neuroendocrine pathways, in which the deterioration of flexible switching plays an important mediating role.


Assuntos
Criatividade , Hidrocortisona , Humanos , Processos Mentais/fisiologia , Dopamina , Piscadela
4.
Mar Pollut Bull ; 198: 115850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029671

RESUMO

Microbe plays an important role in the biogeochemical cycles of the coastal waters. However, comprehensive information about the microbe in the gulf waters is lacking. This study employed high-throughput sequencing and quantitative PCR (qPCR) to investigate the distribution patterns of bacterial, archaeal, ammonia-oxidizing bacterial (AOB), and archaeal (AOA) communities in Daya Bay. Community compositions and principal coordinates analysis (PCoA) exhibited significant spatial characteristics in the diversity and distributions of bacteria, archaea, AOB, and AOA. Notably, various microbial taxa (bacterial, archaeal, AOB, and AOA) exhibited significant differences in different regions, playing crucial roles in nitrogen, sulfur metabolism, and organic carbon mineralization. Canonical correlation analysis (CCA) or redundancy analysis (RDA) indicated that environmental parameters such as temperature, salinity, nitrate, total nitrogen, silicate, and phosphate strongly influenced the distributions of bacterial, archaeal, AOB, and AOA. This study deepens the understanding of the composition and ecological function of prokaryotes in the bay.


Assuntos
Amônia , Archaea , Archaea/metabolismo , Amônia/metabolismo , Baías , Oxirredução , Sedimentos Geológicos/química , Bactérias/metabolismo , China , Nitrogênio/metabolismo , Filogenia , Microbiologia do Solo
5.
Acta Neuropathol Commun ; 11(1): 164, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845749

RESUMO

Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Animais , Esclerose Amiotrófica Lateral/metabolismo , Dipeptídeos/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Arginina/genética , Arginina/metabolismo , Células HEK293 , Neurônios Motores/metabolismo , Drosophila/metabolismo , RNA/metabolismo , Demência Frontotemporal/genética , Expansão das Repetições de DNA/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética
6.
Mar Environ Res ; 191: 106173, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37713780

RESUMO

A shift in species dominance in the mangrove microalgae community in Cross River Estuary System (CRES), Nigeria, was carried out during the wet season to highlight the microalgae structure, identify potential indicators, and evaluate the water quality variation. Plankton samples were collected at sixteen selected sampling sites along the river. Diatoms showed the highest number of species (240 species), contributing more than 70% of the total microalgae abundance. Cluster analysis of the microalgae community delimits the CRES into three sections; upper (UCRS), middle (MCRS), and lower (LCRS) communities. The spatial shift in the microalgae community showed that the green algae (Eudorina elegans and Hylotheca dissiliens) dominated the UCRS communities, while diatoms dominated the MCRS (Polymyxus coronalis and Actinocyclus normanii) and LCRS (A. normanii and A. octonarius). The principal component analysis showed that the UCRS was influenced by turbidity and nitrate, while the MCRS and LCRS were characterized by phosphate, electrical conductivity, and salinity/total dissolved solids. The similarity percentage (SIMPER) analysis showed that Surirella tenera and Hylotheca dissiliens contributed >3.5% inter site dissimilarity between the UCRS and LCRS microalgae community. The redundancy analysis revealed that some microalgae species such as Odontella mobiliensis, Coscinodiscopsis jonesiana, A. normanii, and A. octonarius responded positively to salinity change and ammonia concentration in the estuary, while S. tenera, P. coronalis, Bacillaria paxilifer, Navicula transitans, Cyclotella meneghiniana, Humidophila contenta, Melosira granulata, Aulacoseira herzogii, Eudorina elegans, H. dissiliens, Mougeotia sp., and Dinobryon sertularia responded positively to turbidity, nitrate, and phosphate concentration. This study illustrates that CRES inhabit rich biodiversity of microalgae which some taxa could be used as indicators of the environmental changes in marine waters.


Assuntos
Diatomáceas , Microalgas , Estuários , Nitratos , Biodiversidade , Estações do Ano , Fosfatos , Monitoramento Ambiental
7.
Curr Biol ; 33(17): 3660-3668.e4, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552985

RESUMO

The needs fulfilled by sleep are unknown, though the effects of insufficient sleep are manifold. To better understand how the need to sleep is sensed and discharged, much effort has gone into identifying the neural circuits involved in regulating arousal, especially those that promote sleep. In prevailing models, the dorsal fan-shaped body (dFB) plays a central role in this process in the fly brain. In the present study we manipulated various properties of the dFB including its electrical activity, synaptic output, and endogenous gene expression. In each of these experimental contexts we were unable to identify any effect on sleep that could be unambiguously mapped to the dFB. Furthermore, we found evidence that sleep phenotypes previously attributed to the dFB were caused by genetic manipulations that inadvertently targeted the ventral nerve cord. We also examined expression of two genes whose purported effects have been attributed to functions within a specific subpopulation of dFB neurons. In both cases we found little to no expression in the expected cells. Collectively, our results cast doubt on the prevailing hypothesis that the dFB plays a central role in promoting sleep.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sono/fisiologia , Privação do Sono
8.
Front Microbiol ; 14: 1180321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425997

RESUMO

Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 µm, FL) and particle-associated (>3 µm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.

9.
Bioengineering (Basel) ; 10(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508905

RESUMO

Aquaporins (AQPs) are essential channel proteins that play central roles in maintaining water homeostasis. Here, a novel aquaporin gene, named KoPIP2;1, was cloned from the mangrove plant Kandelia obovata by RACE technology. The KoPIP2;1 gene was 1404 bp in length with an open reading frame (ORF) of 852 bp, encoded with 283 amino acids. Database comparisons revealed that KoPIP2;1 protein shared the highest identity (91.26%) with the aquaporin HbPIP2;2, which was isolated from Hevea brasiliensis. Gene expression analysis revealed that the KoPIP2;1 gene was induced higher in leaves than in stems and roots of K. obovata under cold stress. Transient expression of KoPIP2;1 in Nicotiana benthamiana epidermal cells revealed that the KoPIP2;1 protein was localized to the plasma membrane. Overexpressing KoPIP2;1 in Arabidopsis significantly enhanced the lateral root number of the transgenic lines. KoPIP2;1 transgenic Arabidopsis demonstrated better growth, elevated proline content, increased superoxide dismutase (SOD) and peroxidase (POD) activities, and reduced malondialdehyde (MDA) content compared with the wild-type Arabidopsis when exposed to cold stress. The findings suggest that overexpression of KoPIP2;1 probably conferred cold tolerance of transgenic Arabidopsis by enhancing osmoregulation and antioxidant capacity. This present data presents a valuable gene resource that contributes to the advancement of our understanding of aquaporins and their potential application in enhancing plant stress tolerance.

10.
Ann Surg ; 278(5): e988-e994, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309899

RESUMO

OBJECTIVES: We aimed to determine the current incidence rate and risk factors for surgical site infection (SSI) after abdominal surgery in China and to further demonstrate the clinical features of patients with SSI. BACKGROUND: Contemporary epidemiology and clinical features of SSI after abdominal surgery remain poorly characterized. METHODS: A prospective multicenter cohort study was conducted from March 2021 to February 2022; the study included patients who underwent abdominal surgery at 42 hospitals in China. Multivariable logistic regression analysis was performed to identify risk factors for SSI. Latent class analysis (LCA) was used to explore the population characteristics of SSI. RESULTS: In total, 23,982 patients were included in the study, of whom 1.8% developed SSI. There was a higher SSI incidence in open surgery (5.0%) than in laparoscopic or robotic surgeries (0.9%). Multivariable logistic regression indicated that the independent risk factors for SSI after abdominal surgery were older age, chronic liver disease, mechanical bowel preparation, oral antibiotic bowel preparation, colon or pancreas surgery, contaminated or dirty wounds, open surgery, and colostomy/ileostomy. LCA revealed 4 subphenotypes in patients undergoing abdominal surgery. Types α and ß were mild subclasses with a lower SSI incidence; whereas types γ and δ were the critical subgroups with a higher SSI incidence, but their clinical features were different. CONCLUSIONS: LCA identified 4 subphenotypes in patients who underwent abdominal surgery. Types γ and δ were critical subgroups with a higher SSI incidence. This phenotype classification can be used to predict SSI after abdominal surgery.


Assuntos
Laparoscopia , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Estudos Prospectivos , Estudos de Coortes , Laparoscopia/efeitos adversos , Fatores de Risco , Incidência
11.
J Neurosci ; 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680412

RESUMO

The need to sleep is sensed and discharged in a poorly understood process that is homeostatically controlled over time. In flies, different contributions to this process have been attributed to peripheral ppk and central brain neurons, with the former serving as hypothetical inputs to the sleep homeostat and the latter reportedly serving as the homeostat itself. Here we re-evaluate these distinctions in light of new findings using female flies. First, activating neurons targeted by published ppk and brain drivers elicits similar phenotypes - namely sleep deprivation followed by rebound sleep. Second, inhibiting activity or synaptic output with one type of driver suppresses sleep homeostasis induced using the other type of driver. Third, drivers previously used to implicate central neurons in sleep homeostasis unexpectedly also label ppk neurons. Fourth, activating only this subset of co-labeled neurons is sufficient to elicit sleep homeostasis. Thus, many published contributions of central neurons to sleep homeostasis can be explained by previously unrecognized expression of brain drivers in peripheral ppk neurons, most likely those in the legs that promote walking. Lastly, we show that activation of certain non-ppk neurons can also induce sleep homeostasis. Notably, axons of these as well as ppk neurons terminate in the same ventral brain region, suggesting that a previously undefined neural circuit element of a sleep homeostat may lie nearby.SIGNIFICANCE STATEMENT:The biological need(s) that sleep fulfills are unknown, but they are reflected by an animal's ability to compensate for prior sleep loss in a process called sleep homeostasis. Researchers have searched for the neural circuitry that comprises the sleep homeostat so that the information it conveys can shed light on the nature of sleep need. Here we demonstrate that neurons originating outside of the brain are responsible for phenotypes previously attributed to the proposed central brain sleep homeostat in flies. Our results support a revised neural circuit model for sensing and discharging sleep need in which peripheral inputs connect to a sleep homeostat through previously unrecognized neural circuit elements in the ventral brain.

12.
BMC Biol ; 20(1): 108, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35550070

RESUMO

BACKGROUND: Cannabinoids and their derivatives attract strong interest due to the tremendous potential of their psychoactive effects for treating psychiatric disorders and symptoms. However, their clinical application is restricted by various side-effects such as impaired coordination, anxiety, and learning and memory disability. Adverse impact on dorsal striatum-dependent learning is an important side-effect of cannabinoids. As one of the most important forms of learning mediated by the dorsal striatum, reinforcement learning is characterized by an initial association learning phase, followed by habit learning. While the effects of cannabinoids on habit learning have been well-studied, little is known about how cannabinoids influence the initial phase of reinforcement learning. RESULTS: We found that acute activation of cannabinoid receptor type 1 (CB1R) by the synthetic cannabinoid HU210 induced dose-dependent impairment of association learning, which could be alleviated by intra-dorsomedial striatum (DMS) injection of CB1R antagonist. Moreover, acute exposure to HU210 elicited enhanced synaptic transmission in striatonigral "direct" pathway medium spiny neurons (MSNs) but not indirect pathway neurons in DMS. Intriguingly, enhancement of synaptic transmission that is also observed after learning was abolished by HU210, indicating cannabinoid system might disrupt reinforcement learning by confounding synaptic plasticity normally required for learning. Remarkably, the impaired response-reinforcer learning was also induced by selectively enhancing the D1-MSN (MSN that selectively expresses the dopamine receptor type 1) activity by virally expressing excitatory hM3Dq DREADD (designer receptor exclusively activated by a designer drug), which could be rescued by specifically silencing the D1-MSN activity via hM4Di DREADD. CONCLUSION: Our findings demonstrate dose-dependent deleterious effects of cannabinoids on association learning by disrupting plasticity change required for learning associated with the striatal direct pathway, which furthers our understanding of the side-effects of cannabinoids and the underlying mechanisms.


Assuntos
Canabinoides , Aprendizagem por Associação , Canabinoides/metabolismo , Canabinoides/farmacologia , Corpo Estriado/metabolismo , Humanos , Neurônios/fisiologia , Transmissão Sináptica
13.
Learn Behav ; 50(3): 267-268, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35618985

RESUMO

Smith et al. in Nature Communications, 12, 5121, (2021) provided evidence to challenge the simple dichotomy that learning of actions and expression of habitual behaviors are processed separately in dorsomedial (DMS) and dorsolateral striatum (DLS) by demonstrating that D2 receptor-expressing medium spiny neurons (D2-MSNs) in anterior DLS could modulate newly learned action, except for its involvement in the expression of habitual actions. Here we review recent advances and introduce a valuable addition to the traditional hypothesis by taking into account the common ligand of D1 and D2 neurons, dopamine.


Assuntos
Corpo Estriado , Receptores de Dopamina D2 , Animais , Corpo Estriado/metabolismo , Hábitos , Neurônios/fisiologia , Receptores de Dopamina D2/metabolismo
14.
iScience ; 25(2): 103788, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198864

RESUMO

Most biomolecules are biologically active only in water; hence, it is worth investigating whether THz spectra of biomolecules are affected by the combination of water molecules and biomolecules. In this report, by combining the sample cell with the THz-TDS system, the THz spectra of L-Arginine crystal as well as its hydrate and aqueous solution are measured. The experimental results show that L-Arginine crystal and its hydrate share the same three absorption peaks at 0.99, 1.46, and 1.7 THz, respectively. But the trend of characteristic absorption spectrum of L-arginine solution is almost identical to that of free water. Because the contents of free water and hydrated water are different in many diseased and normal tissues, the diseased tissues can be detected according to the difference in THz spectral information. The proposed approach provides a reliable means for the detection of pathological changes of active molecules and tissues.

16.
Mol Neurobiol ; 58(11): 5667-5681, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34387814

RESUMO

The activity of the midbrain dopamine system reflects the valence of environmental events and modulates various brain structures to modify an organism's behavior. A series of recent studies reported that the direct and indirect pathways in the striatum are critical for instrumental learning, but the dynamic changes in dopamine neuron activity that occur during negative reinforcement learning are still largely unclear. In the present study, by using a negative reinforcement learning paradigm employing foot shocks as aversive stimuli, bidirectional changes in substantia nigra pars compacta (SNc) dopamine neuron activity in the learning and habituation phases were observed. The results showed that in the learning phase, before mice had mastered the skill of escaping foot shocks, the presence of foot shocks induced a transient reduction in the activity of SNc dopamine neurons; however, in the habituation phase, in which the learned skill was automated, it induced a transient increase. Microinjection of a dopamine D1 receptor (D1R) or D2 receptor (D2R) antagonist into the dorsomedial striatum (DMS) significantly impaired learning behavior, suggesting that the modulatory effects of dopamine on both the direct and indirect pathways are required. Moreover, during the learning phase, excitatory synaptic transmission to DMS D2R-expressing medium spiny neurons (D2-MSNs) was potentiated. However, upon completion of the learning and habituation phases, the synapses onto D1R-expressing medium spiny neurons (D1-MSNs) were potentiated, and those onto D2-MSNs were restored to normal levels. The bidirectional changes in both SNc dopamine neuron activity and DMS synaptic plasticity might be the critical neural correlates for negative reinforcement learning.


Assuntos
Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/fisiologia , Reforço Psicológico , Animais , Benzazepinas/farmacologia , Corpo Estriado/fisiologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Eletrochoque , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Ácido Glutâmico/metabolismo , Habituação Psicofisiológica/efeitos dos fármacos , Habituação Psicofisiológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Proteínas Recombinantes/metabolismo , Análise de Célula Única , Sacarose , Transmissão Sináptica
17.
J Neurosci ; 41(41): 8461-8474, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34446574

RESUMO

α7 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain where they promote fast cholinergic synaptic transmission and serve important neuromodulatory functions. However, their high permeability to Ca2+ also predisposes them to contribute to disease states. Here, using transfected HEK-tsa cells and primary cultured hippocampal neurons from male and female rats, we demonstrate that two proteins called Ly6h and NACHO compete for access to α7 subunits, operating together but in opposition to maintain α7 assembly and activity within a narrow range that is optimal for neuronal function and viability. Using mixed gender human temporal cortex and cultured hippocampal neurons from rats we further show that this balance is perturbed during Alzheimer's disease (AD) because of amyloid ß (Aß)-driven reduction in Ly6h, with severe reduction leading to increased phosphorylated tau and α7-mediated neurotoxicity. Ly6h release into human CSF is also correlated with AD severity. Thus, Ly6h links cholinergic signaling, Aß and phosphorylated tau and may serve as a novel marker for AD progression.SIGNIFICANCE STATEMENT One of the earliest and most persistent hypotheses regarding Alzheimer's disease (AD) attributes cognitive impairment to loss of cholinergic signaling. More recently, interest has focused on crucial roles for amyloid ß (Aß) and phosphorylated tau in Alzheimer's pathogenesis. Here, we demonstrate that these elements are linked by Ly6h and its counterpart, NACHO, functioning in opposition to maintain assembly of nicotinic acetylcholine receptors (nAChRs) within the physiological range. Our data suggests that Aß shifts the balance away from Ly6h and toward NACHO, resulting in increased assembly of Ca2+-permeable nAChRs and thus a conversion of basal cholinergic to neurotoxic signaling.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Células Cultivadas , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo , Lobo Temporal/patologia
18.
Ecotoxicology ; 30(9): 1808-1815, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34269924

RESUMO

In this study, Illumina MiSeq sequencing of the 16 S rRNA gene was used to describe the bacterial communities in the South China Sea (SCS) during the southwest monsoon period. We targeted different regions in the SCS and showed that bacterial community was driven by the effects of the river, upwelling, and mesoscale eddy through changing the environmental factors (salinity, temperature, and nutrients). Distinct bacterial communities were observed among different chemical conditions, especially between the estuary and the open sea. The abundance of Burkholderiales, Frankiales, Flavobacteriales, and Rhodobacterales dominated the estuary and its adjacent waters. Bacteria in cyclonic eddy were dominated by Methylophilales and Pseudomonadales, whereas Prochlorococcus, SAR11 clade, and Oceanospirillales had relatively high abundance in the anticyclonic eddy. Overall, the abundance of specific phylotypes significantly varied among samples with different chemical conditions. Chemical conditions probably act as a driver that shapes and controls the diversity of bacteria in the SCS. This study suggests that the interaction between microbial and environmental conditions needs to be further considered to fully understand the diversity and function of marine microbes.


Assuntos
Bactérias , Água do Mar , Bactérias/genética , China , Estuários , Oceanos e Mares , Filogenia , Rios
19.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035070

RESUMO

Prolonged stress induces neural maladaptations in the mesolimbic dopamine (DA) system and produces emotional and behavioral disorders. However, the effects of stress on activity of DA neurons are diverse and complex that hinge on the type, duration, intensity, and controllability of stressors. Here, controlling the duration, intensity, and type of the stressors to be identical, we observed the effects of stressor controllability on the activity of substantia nigra pars compacta (SNc) DA neurons in mice. We found that both lack and loss of control (LOC) over shock enhance the basal activity and intrinsic excitability of SNc DA neurons via modulation of Ih current, but not via corticosterone serum level. Moreover, LOC over shock produces more significant enhancement in the basal activity of SNc DA neurons than that produced by shock per se, and therefore attenuates the response to natural reward. This attenuation can be reversed by control over shock. These results indicate that although chronic stress per se tends to enhance the basal activity of SNc DA neurons, LOC over the stressor is able to induce a larger enhancement in the basal activity of SNc DA neurons and produce more severe behavioral deficits. However, control over stress ameliorates the deleterious effects of stress, highlighting the role of stress controllability.


Assuntos
Neurônios Dopaminérgicos , Parte Compacta da Substância Negra , Animais , Dopamina , Camundongos , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...